5 research outputs found

    Sustainability Analysis Framework for On-Demand Public Transit Systems

    Full text link
    There is an increased interest from transit agencies to replace fixed-route transit services with on-demand public transits (ODT). However, it is still unclear when and where such a service is efficient and sustainable. To this end, we provide a comprehensive framework for assessing the sustainability of ODT systems from the perspective of overall efficiency, environmental footprint, and social equity and inclusion. The proposed framework is illustrated by applying it to the Town of Innisfil, Ontario, where an ODT system has been implemented since 2017. It can be concluded that when there is adequate supply and no surge pricing, crowdsourced ODTs are the most cost-effective transit system when the demand is below 3.37 riders/km2/day. With surge pricing applied to crowdsourced ODTs, hybrid systems become the most cost-effective transit solution when demand ranges between 1.18 and 3.37 riders/km2/day. The use of private vehicles is more environmentally sustainable than providing public transit service at all demand levels below 3.37 riders/km2/day. However, the electrification of the public transit fleet along with optimized charging strategies can reduce total yearly GHG emissions by more than 98%. Furthermore, transit systems have similar equity distributions for waiting and in-vehicle travel times

    Driver Heterogeneity in Willingness to Give Control to Conditional Automation

    Full text link
    The driver's willingness to give (WTG) control in conditionally automated driving is assessed in a virtual reality based driving-rig, through their choice to give away driving control and through the extent to which automated driving is adopted in a mixed-traffic environment. Within- and across-class unobserved heterogeneity and locus of control variations are taken into account. The choice of giving away control is modelled using the mixed logit (MIXL) and mixed latent class (LCML) model. The significant latent segments of the locus of control are developed into internalizers and externalizers by the latent class model (LCM) based on the taste heterogeneity identified from the MIXL model. Results suggest that drivers choose to "giveAway" control of the vehicle when greater concentration/attentiveness is required (e.g., in the nighttime) or when they are interested in performing a non-driving-related task (NDRT). In addition, it is observed that internalizers demonstrate more heterogeneity compared to externalizers in terms of WTG

    Sustainability analysis framework for on-demand public transit systems

    No full text
    Abstract There is an increased interest from transit agencies to replace fixed-route transit services with on-demand public transits (ODT). However, it is still unclear when and where such a service is efficient and sustainable. To this end, we provide a comprehensive framework for assessing the sustainability of ODT systems from the perspective of overall efficiency, environmental footprint, and social equity and inclusion. The proposed framework is illustrated by applying it to the Town of Innisfil, Ontario, where an ODT system has been implemented since 2017. It can be concluded that when there is adequate supply and no surge pricing, crowdsourced ODTs are the most cost-effective transit system when the demand is below 3.37 riders/km2/day. With surge pricing applied to crowdsourced ODTs, hybrid systems become the most cost-effective transit solution when demand ranges between 1.18 and 3.37 riders/km2/day. The use of private vehicles is more environmentally sustainable than providing public transit service at all demand levels below 3.37 riders/km2/day. However, the electrification of the public transit fleet along with optimized charging strategies can reduce total yearly GHG emissions by more than 98%. Furthermore, transit systems have similar equity distributions for waiting and in-vehicle travel times

    On-Demand Transit User Preference Analysis using Hybrid Choice Models

    Full text link
    In light of the increasing interest to transform the fixed-route public transit (FRT) services into on-demand transit (ODT) services, there exists a strong need for a comprehensive evaluation of the effects of this shift on the users. Such an analysis can help the municipalities and service providers to design and operate more convenient, attractive, and sustainable transit solutions. To understand the user preferences, we developed three hybrid choice models: integrated choice and latent variable (ICLV), latent class (LC), and latent class integrated choice and latent variable (LC-ICLV) models. We used these models to analyze the public transit user's preferences in Belleville, Ontario, Canada. Hybrid choice models were estimated using a rich dataset that combined the actual level of service attributes obtained from Belleville's ODT service and self-reported usage behaviour obtained from a revealed preference survey of the ODT users. The latent class models divided the users into two groups with different travel behaviour and preferences. The results showed that the captive user's preference for ODT service was significantly affected by the number of unassigned trips, in-vehicle time, and main travel mode before the ODT service started. On the other hand, the non-captive user's service preference was significantly affected by the Time Sensitivity and the Online Service Satisfaction latent variables, as well as the performance of the ODT service and trip purpose. This study attaches importance to improving the reliability and performance of the ODT service and outlines directions for reducing operational costs by updating the required fleet size and assigning more vehicles for work-related trips
    corecore